Search results for " Soil N availability"
showing 2 items of 2 documents
"Role of Arbuscular Mycorrhizal Fungi in Nutrient Uptake and Growth of Durum Wheat"
Soil microbiome is involved at different levels in the food web, in bio-geochemical nutrient cycles and in several interactions with plants. Based on its key role in the agro-ecosystem processes, the soil microbiome has been identified as one of the principal factors in an agriculture addressed to the ecological intensification. Among the several relationships established between plants and soil microorganisms, arbuscular mycorrhizal (AM) symbiosis is the most widespread. Two out of three of all plant taxa (among others the main crops) are involved in the AM symbiosis which takes place between the plant root system and arbuscular mycorrhizal fungi (AMF), a monophyletic group of fungi belong…
Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability
2020
Plant performance is strongly dependent on nitrogen (N), and thus increasing N nutrition is of great relevance for the productivity of agroecosystems. The effects of arbuscular mycorrhizal (AM) fungi on plant N acquisition are debated because contradictory results have been reported. Using 15N-labeled fertilizers as a tracer, we evaluated the effects of AM fungi on N uptake and recovery from mineral or organic sources in durum wheat. Under sufficient N availability, AM fungi had no effects on plant biomass but increased N concentrations in plant tissue, plant N uptake, and total N recovered from the fertilizer. In N-deficient soil, AM fungi led to decreased aboveground biomass, which sugges…